Tags: alg
- \(s\), \(t\) 在割的同一侧
- \(s\), \(t\) 在割的两侧
1 cut-of-the-phase
求任意两点的s-t割如果使用网络流速度有些慢。 cut-of-the-phase 可以求出某两点之间的s-t最小割。既然Stoer-Wagner中的 \(s\) , \(t\) 是任取的, 自然可以选择cut-of-the-phase能求出最小割的那两点。Min Cut Phase(G,w,a)
A <- {a}
while(A!=V)
add A the most tightly connected vertex
store cut of the phase
shrink G by merging the two vertices added last
图中 most tightly connected vertex 指的是\(\underset{v}{\operatorname{arg max}} \sum_{u\in A}
d(v,u)\) (if there is no edge e(v,u), d(v,u)=0),
cut-of-the-phase指的是最后加入\(A\)的点\(t\)与倒数第二个加入\(A\)的点\(s\)的s-t割就是\(\sum_{u\in A} d(t,u)\)
下面最后加入\(A\)的点是 \(t\), 倒数第二个加入的是\(s\)。令\(X,Y\subset V\),\(w(X,Y)=\sum_{x\in X}\sum_{y\in Y} d(x,y)\)
(if there is no edge e(x,y), d(x,y)=0),
要证明\(s\)与\(t\)之间的最小割是这样的: