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1.1 What is LP? 1. LP is relevant to the course!

Definition :  A linear program (LP) is an optimization
problem of the form:

max 𝑐𝑇 𝑥
𝑠.𝑡. 𝐴𝑥 ≥ 𝑏

𝑥 ≥ 0

LPs are easy to solve 
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1.1 What is LP? 1. LP is relevant to the course!

Definition :  A linear program (LP) is an optimization
problem of the form:

max 𝑐𝑇 𝑥
𝑠.𝑡. 𝐴𝑥 ≥ 𝑏

𝑥 ≥ 0

LPs are easy to solve in low dimensions.

丛宇 LP in Low Dimensions 2024-09-24 1 / 8



1.2 LP in Machine Learning 1. LP is relevant to the course!
Machine learning is full of convex optimization problems. Why
focus on the special case of LP?

• Solving LPs are fast (compared to convex optimization
problems) e.g. linear programming SVM

• Sparse Linear Models
• Online learning via LPs
• …
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https://www.sciencedirect.com/science/article/pii/S0031320301002102
https://www.cs.princeton.edu/~bee/courses/scribe/lec_10_07_2013.pdf
https://web.stanford.edu/~yyye/NeurIPSOPT.pdf


2.1 LP in 𝑑 Dimension 2. Theoretical view
For fixed dimensions, LPs can be solved in linear time!

table stolen from https://dl.acm.org/doi/10.1145/3155312
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https://dl.acm.org/doi/10.1145/3155312


2.2 Seidel’s Algorithm - 𝑂(𝑑!𝑛) 2. Theoretical view
The well-loved randomized algorithm is extremely simple.

LPs are just finding an extreme point in some direction in a polytope.
https://www.cs.cmu.edu/~15451-f15/lectures/lect1021-lpII.pdf
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https://www.cs.cmu.edu/~15451-f15/lectures/lect1021-lpII.pdf


2.2 Seidel’s Algorithm - 𝑂(𝑑!𝑛) 2. Theoretical view
Let’s add in the constraints one at a time and keep track of the
current optimal solution 𝑥∗.

After adding a new constraint 𝑎𝑚 ⋅ 𝑥 ≤ 𝑏𝑚, there will be two
cases,

1. 𝑥∗ satisfies the new constraint,
2. 𝑥∗ does not satisfy the new constraint.

丛宇 LP in Low Dimensions 2024-09-24 5 / 8



2.2 Seidel’s Algorithm - 𝑂(𝑑!𝑛) 2. Theoretical view

The new optimal 𝑥∗ should locate on a 𝑑 − 1 dimension hyperplane
𝑎𝑚 ⋅ 𝑥 = 𝑏𝑚.

Assume that our 𝑑 dimensional LP is feasible and the optimal 𝑥∗ is
qnique. Then 𝑥∗ is defined by exactly 𝑑 constraints(hyperplanes).
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2.2 Seidel’s Algorithm - 𝑂(𝑑!𝑛) 2. Theoretical view
algorithm seidel(S, f, X) is
    R := empty set
    B := X
    for x in a random permutation of S:
        if f(B) ≠ f(B ∪ {x}):           // case 2
            B := seidel(R, f, X ∪ {x})
        R := R ∪ {x}
    return B

Case 2 is more expensives than 1. What is the chance of getting case 2
when inserting the 𝑚’th constraint?

If we are inserting constraints in a random order,

𝑃(case 2) ≤
𝑑 − |𝑋|

𝑚
≤

𝑑
𝑚
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2.2 Seidel’s Algorithm - 𝑂(𝑑!𝑛) 2. Theoretical view
algorithm seidel(S, f, X) is
    R := empty set
    B := X
    for x in a random permutation of S:
        if f(B) ≠ f(B ∪ {x}):           // case 2
            B := seidel(R, f, X ∪ {x})
        R := R ∪ {x}
    return B

We need 𝑂(𝑑) time to do the violation test for case 2. Let the expected number of violation
tests be 𝑇 (𝑠, 𝑥),

𝑇 (𝑠, 𝑥) ≤ ∑
𝑠

𝑖=𝑑

𝑑 − 𝑥
𝑖

(1 + 𝑇(𝑖, 𝑥 + 1))

After solving the recurence, we get 𝑇 (𝑠, 𝑥) = 𝑂(𝑑!𝑠). Thus Seidel’s alg has expected
complexity 𝑂(𝑑!𝑛) on any 𝑑-dimension LP with 𝑛 constraints.
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