Linear Programming in Low Dimensions

丛宇

UESTC

2024-09-24

1.1 What is LP?

1. LP is relevant to the course!

Definition: A linear program (LP) is an optimization problem of the form:

 $\max c^T x$
s.t. $Ax \ge b$
 $x \ge 0$

LPs are easy to solve

1.1 What is LP?

1. LP is relevant to the course!

Definition: A linear program (LP) is an optimization problem of the form:

 $\max c^T x$
s.t. $Ax \ge b$
 $x \ge 0$

LPs are easy to solve in low dimensions.

1.2 LP in Machine Learning

1. LP is relevant to the course!

Machine learning is full of convex optimization problems. Why focus on the special case of LP?

- Solving LPs are fast (compared to convex optimization problems) e.g. <u>linear programming SVM</u>
- Sparse Linear Models
- Online learning via LPs
- ..

2.1 LP in d **Dimension**

2. Theoretical view

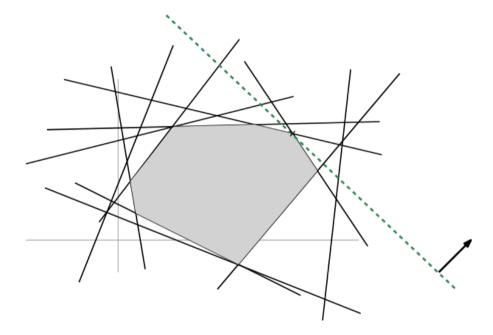
For fixed dimensions, LPs can be solved in linear time!

simplex method	det.	$O(n/d)^{d/2+O(1)}$
Megiddo [24]	det.	$2^{O(2^d)}n$
Clarkson $[9]/Dyer$ $[14]$	det.	$3^{d^2}n$
Dyer and Frieze [15]	rand.	$O(d)^{3d} (\log d)^d n$
Clarkson [10]	rand.	$\left \ d^2n + O(d)^{d/2 + O(1)} \log n + d^4 \sqrt{n} \log n \ \right $
Seidel [26]	rand.	d!n
Kalai [19]/Matoušek, Sharir, and Welzl [23]	rand.	$\min\{d^2 2^d n, e^{2\sqrt{d\ln(n/\sqrt{d})} + O(\sqrt{d} + \log n)}\}$
combination of $[10]$ and $[19, 23]$	rand.	$d^2n + 2^{O(\sqrt{d \log d})}$
Hansen and Zwick [18]	rand.	$2^{O(\sqrt{d\log((n-d)/d)})}n$
Agarwal, Sharir, and Toledo [4]	det.	$O(d)^{10d} (\log d)^{2d} n$
Chazelle and Matoušek [8]	det.	$O(d)^{7d} (\log d)^d n$
Brönnimann, Chazelle, and Matoušek [5]	det.	$O(d)^{5d} (\log d)^d n$
this paper Chan	det.	$O(d)^{d/2} (\log d)^{3d} n$

table stolen from https://dl.acm.org/doi/10.1145/3155312

2. Theoretical view

The well-loved randomized algorithm is extremely simple.



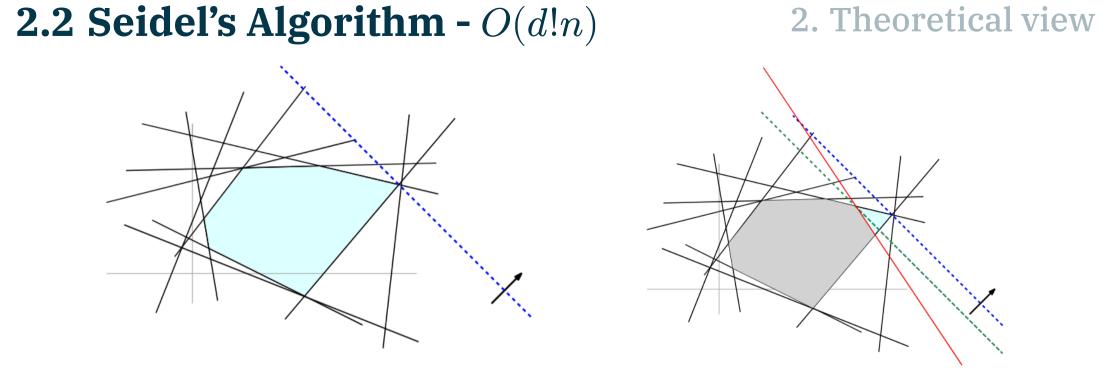
LPs are just finding an extreme point in some direction in a polytope. https://www.cs.cmu.edu/~15451-f15/lectures/lect1021-lpII.pdf

2. Theoretical view

Let's add in the constraints one at a time and keep track of the current optimal solution x^* .

After adding a new constraint $a_m \cdot x \leq b_m$, there will be two cases,

- 1. x^* satisfies the new constraint,
- 2. x^* does not satisfy the new constraint.



The new optimal x^* should locate on a d-1 dimension hyperplane $a_m \cdot x = b_m$.

Assume that our *d* dimensional LP is feasible and the optimal x^* is qnique. Then x^* is defined by exactly *d* constraints(hyperplanes).

2. Theoretical view

```
algorithm seidel(S, f, X) is

R := empty set

B := X

for x in a random permutation of S:

if f(B) \neq f(B \cup {x}): // case 2

B := seidel(R, f, X \cup {x})

R := R \cup {x}

return B
```

Case 2 is more expensives than 1. What is the chance of getting case 2 when inserting the m'th constraint?

If we are inserting constraints in a random order,

$$P(\text{case } 2) \leq \frac{d-|X|}{m} \leq \frac{d}{m}$$

2. Theoretical view

```
algorithm seidel(S, f, X) is

R := empty set

B := X

for x in a random permutation of S:

if f(B) \neq f(B \cup {x}): // case 2

B := seidel(R, f, X \cup {x})

R := R \cup {x}

return B
```

We need O(d) time to do the violation test for case 2. Let the expected number of violation tests be $T(s,x){\sf ,}$

$$T(s,x) \leq \sum_{i=d}^s \frac{d-x}{i}(1+T(i,x+1))$$

After solving the recurrence, we get T(s, x) = O(d!s). Thus Seidel's alg has expected complexity O(d!n) on any *d*-dimension LP with *n* constraints.