Primal-Dual Method

Yu Cong

March 8, 2022

Overview

1. Classical Primal-Dual Method

- 2. Primal-Dual for Approximation Algorithms
 - 2.1 approximation rate
- 3. Function f(S)

Classical Primal-Dual Method

Primal LP problem:

Dual problem:

$$\begin{array}{lll}
\min & c^T x & \max & b^T y \\
s.t. & Ax \ge b & s.t. & A^T y \le c \\
& x \ge 0 & y \ge 0
\end{array}$$

Optimal solutions for primal and dual problems satisfy complementary slackness conditions(CSC):

$$y_i(A_ix-b_i)=0$$

$$x_j(A^jy-c_j)=0$$

 A_i : the i th row of A

 A^{j} : the j th column of A

Given a feasible dual solution y for some $y_i > 0$, $A_i x - b_i = 0$; for $A^j y - c_j < 0$, we have $x_i = 0$. $I = \{i | y_i = 0\}, J = \{j | A^j y - c_j = 0\}$ restricted primal problem:

$$z = \min \sum_{i \notin I} s_i + \sum_{j \notin J} x_j$$

$$s.t. \quad Ax_i \ge b_i \qquad i \in I$$

$$Ax_i - s_i = b_i \qquad i \notin I$$

$$x \ge 0$$

$$s \ge 0$$

if z=0, the primal feasible solution x obeys the CSC, x is the optimal solution; if $z\neq 0$, x violates some primal constrains or some CSC. y is less than OPT of dual.

dual of restricted primal problem:

$$\max b^{T} y'$$

$$s.t. \quad A^{j} y' \leq 0 \qquad j \in J$$

$$A^{j} y' \leq 1 \qquad j \notin J$$

$$y'_{i} \geq -1 \qquad i \notin I$$

$$y'_{i} \geq 0 \qquad i \in I$$

since OPT of restricted primal >0, there is a dual solution y' s.t. $b^Ty'>0$. $y''=y+\epsilon y'$, where $\epsilon \leq \min_{i\notin I: y_i'<0} -y_i/y_i'$ and $\epsilon \leq \min_{j\notin J: \mathcal{A}iy'>0} \frac{c_j-\mathcal{A}iy}{\mathcal{A}iy'}$ repeat this process until OPT of restricted primal problem is 0.

Primal-Dual for Approximation Algorithms

2 problems with classic primal-dual method:

- linear programming
- how to find a solution y' for dual of restricted primal problem.

Hitting set problem:

Hitting set is an equivalent reformulation of Set Cover.

Given subsets T_1, \ldots, T_p of a ground set E and given a nonnegative cost c_e for every element in E, find a minimum-cost subset A s.t. $A \cap T_i \neq \emptyset$ for $i = 1, \ldots, p$.

Examples:

- undirected s-t shortest path: $\delta(S)$ needs to be hit if $s \in S, t \notin S$.
- minimum spanning tree: $\delta(S)$ needs to be hit for all S.

Hitting set problem can be formulated with integer programming(IP).

IP for undirected s-t shortest path: dual of its LP relaxation:

$$\min \sum_{e \in E} c_e x_e \qquad \max \sum_{S: f(S) = 1} y_S$$

$$s.t. \quad \sum_{e \in \delta(S)} x_e \ge f(S) \quad S \subset V \qquad s.t. \quad \sum_{S: e \in \delta(S)} y_S \le c_e \quad e \in E$$

$$x_i \in \{0, 1\} \qquad y_S \ge 0$$

- * $\delta(S)$: a cut on S and V-S
- * $A = \{e : x_e = 1\}$
- * y: dual variable
- * T_1, \ldots, T_p sets to be hit

start with y=0, if there is any $\delta(S): f(S)=1$ that $|A\cap \delta(S)|=0$, we increase the corresponding dual variable y_S :

$$y_S = min_{e \in \delta(S)} \{ c_e - \sum_{T \neq S: e \in \delta(T)} y_T \}$$

if $\sum_{S:e\in\delta(S)}y_S\leq c_e$ is satisfied, set corresponding primal variable $x_e=1$. some edge $e\in\delta(S)$ will be add to A.

```
1 y \leftarrow 0

2 A \leftarrow \emptyset

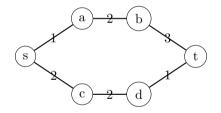
3 While \exists k : A \cap T_k = \emptyset

4 Increase y_k until \exists e \in T_k : \sum_{i:e \in T_i} y_i = c_e

5 A \leftarrow A \cup \{e\}

6 Output A (and y)
```

Example



cuts	1	2	3	4	5
sa,sc	+1(sa)				
sa,cd					
sa,dt					
ab,sc		+1(sc)			
ab,cd			+1(ab)		
ab,dt					
bt,sc					
bt,cd				+1(cd)	
bt,dt					+1(dt)

design rules

- reverse delete step
- minimal violated set rule
- uniorm increase rule

```
1 y \leftarrow 0

2 A \leftarrow \emptyset

3 l \leftarrow 0

4 While A is not feasible

5 l \leftarrow l+1

6 V \leftarrow \text{VIOLATION}(A)

7 Increase y_k uniformly for all T_k \in V until \exists e_l \notin A : \sum_{i:e_l \in T_i} y_i = c_{e_l}

8 A \leftarrow A \cup \{e_l\}

9 For j \leftarrow l downto 1

10 if A - \{e_j\} is feasible then A \leftarrow A - \{e_j\}

11 Output A (and y)
```

approximation rate

$$c(A) = \sum_{e \in A} c_e$$

$$= \sum_{e \in A} \sum_{i: e \in T_i} y_i$$

$$= \sum_{i=1}^p |A \cap T_i| y_i$$

let $\alpha = \max\{|A \cap T_i|\}$. Since $\sum y_i \leq OPT$, we get

$$c(A) \leq \sum_{i=1}^{p} \alpha y_i \leq \alpha OPT$$

Define **minimal augmentation** B of an infeasible solution A: B is a feasible solution that includes A and for any subset $C \subset B - A$, $A \cup C$ is not a feasible solution.

For any final primal solution A_f , $|B \cap T_i| \ge |A_f \cap T_i|$ holds if B is the maximum minimal augmentation set.

$$\beta = \max_{A:\exists T_{i:}|T_{i}\cap A|=0} \max_{B} |B\cap T(A)|$$

T(A) is the T_i selected by the algorithm for infeasible solution A.

Consider the violation set V_j , $y_i = \sum_{j:T_i \in V_j} \epsilon_j$ suppose now there is p violated cuts and l violated sets.

$$\sum_{i=1}^{p} y_i = \sum_{i=1}^{p} \sum_{j: T_i \in \mathcal{V}_j} \epsilon_j$$

$$= \sum_{j=1}^{l} |\mathcal{V}_j| \epsilon_j$$

$$\sum_{i=1}^{p} |A_f \cap T_i| y_i = \sum_{i=1}^{p} |A_f \cap T_i| \sum_{j: T_i \in \mathcal{V}_j} \epsilon_j$$

$$= \sum_{j=1}^{l} (\sum_{T_i \in \mathcal{V}_j} |A_f \cap T_i|) \epsilon_j$$

Compare $\sum_{j=1}^{I} (\sum_{T_i \in \mathcal{V}_j} |A_f \cap T_i|) \epsilon_j$ with $\sum_{j=1}^{I} |\mathcal{V}_j| \epsilon_j$.

$$\sum_{i=1}^p |A_f \cap T_i| \leq \gamma |\mathcal{V}_j|$$

then

$$\sum_{i=1}^{p} |A_f \cap T_i| y_i = \sum_{j=1}^{l} (\sum_{T_i \in \mathcal{V}_j} |A_f \cap T_i|) \epsilon_j$$

$$\leq \sum_{j=1}^{l} \gamma |\mathcal{V}_j| \epsilon_j$$

$$= \gamma \sum_{i=1}^{p} y_i$$

Again consider minimal augmentation B: $\max |B \cap T_i| \ge |A_f \cap T_i|$ holds, change $|A_f \cap T_i|$ to $|B \cap T_i|$:

$$\sum_{i=1}^p |A_f \cap T_i| \leq \sum_{T_i \in \mathcal{V}(A)} |B \cap T_i| \leq \gamma |\mathcal{V}(A)|$$

 γ is the approximation rate.

Example

prove that the algorithm for s-t shortest path problem above gives the optimal solution.

$$\beta = \max_{A:\exists T_i:|T_i\cap A|=0} \max_{B} |B\cap T(A)|$$

the algorithm considers only one infeasible cut $\delta(S)$ and $s \in S$ and S is minimal. After increasing the corresponding dual variable only one edge will be added to A, so the minimal augmentation $B \cap T(A) = 1$.

0-1 Function f(S)

$$\min \sum_{e \in E} c_e x_e$$
 $s.t. \sum_{e \in \delta(S)} x_e \geq \mathit{f}(S) \quad S \subset V$ $x_i \in \{0,1\}$

To formulate another problem, only need to change the definition of f(S).

0-1 function: $f: 2^V \to \{0, 1\}$

properties

Maximality: If $A \cap B = \emptyset$, $f(A \cup B) \le \max(f(A), f(B))$. A violated set(cut) for A is a connected component of G(V, A)

downward monotone: If $f(S) \le f(T)$ for all $S \supseteq T \ne \emptyset$.

0-1 proper function:

- f(V) = 0
- *f* satisfies the Maximality property.
- f(S) = f(V S) for all $S \subseteq V$

downward monotone function

Example: edge-covering problem:

f(S) = 1 iff. |S| = 1. satisfies downward monotone property.

Primal-Dual method gives a 2-approximation algorithm for edge covering. (use $\beta = \max_{A:\exists T_i:|T_i\cap A|=0} \max_B |B\cap T(A)|$)

Theorem 1 Primal-Dual algorithm gives a 2-approximation algorithm with any downward monotone function.

$$\sum_{S \in \mathcal{V}(A)} |B \cap \delta(S)| \le \gamma |\mathcal{V}(A)|$$

prove $\gamma = 2$

construct a graph H by taking the graph (V, B) and shrinking the connected component of (V, A).(H) is a forest

$$W = \{w | f(S_w) = 1\}$$

$$\sum_{v \in W} d_v \le 2|W|$$

Lemma connected components in H has at most one vertex v such that $f(S_v) = 0$. (prove by contradiction)

c is the number of connected components in H.

$$\sum_{v \in W} d_v \le \sum_{v \in H} d_v = 2(|H| - c) \le 2|W|$$

0-1 proper function

complementarity for 0-1 proper function which satisfies Maximality property, if f(S) = f(A) = 0 for $A \in S$ then f(S - A) = 0.

proof Suppose f(S - A) = 1.

f(V-S)=f(S)=0, f(V-A)=f(A)=0, f(V-S+A)=f(S-A)=1. Function f satisfies Maximality property: $1=f(V-S+A)\leq \max(f(V-A),f(A))=0$, a contradiction.

0-1 proper function

Example generalized steiner tree: minimum forest that connects all vertices T_i for i = 1, ..., p. f(S) = 1 if $\exists i \in \{1, 2, ..., p\}$ s.t. $S \cup T_i \neq \emptyset$ and $S \cup T_i \neq T_i$.

 $\beta=\max_{A:\exists\,T_i:|\,T_i\cap A|=0}\max_B|B\cap T(A)|.$ β can be |V|-1.(Consider a complete graph. Each edge has cost 1. At the first step of primal dual algorithm, $A=\emptyset$, $|B\cap T(A)|=|V|-1$)

Theorem 2 Primal-dual algorithm gives a 2-approximation algorithm for IP with any 0-1 proper function.

Lemma 1 f is 0-1 proper function, A is any feasible solution. $R = \{e | A - e \text{ is feasible}\}$, then A - R is feasible.

proof



Lemma 2 No leaf v of H satisfies $f(S_v) = 0$.

proof Suppose some leaf v satisfies $f(S_v) = 0$, let C be the connected component of (V, B) that contains S_v . Since B is feasible, f(C) = 0. Since $f(S_v) = 0$ and by complementarity property, $f(C - S_v) = 0$. But there is an edge in B that connects $C - S_v$ and S_v , B is the **minimal augmentation**, a contradiction.

Proof of Theorem 2.

By Lemma 2, all vertices with degree 1 are in W.

$$\sum_{v \in W} d_v = \sum_{v \in H} d_v - \sum_{v \notin W} d_v \le 2(|H| - 1) - 2(|H| - |W|) = 2|W| - 2$$

Thank you