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Classical Primal-Dual Method

Primal LP problem: Dual problem:
min  ¢'x max bTy
st. Ax>b s.t. ATy <c
x>0 y>0

Optimal solutions for primal and dual problems satisfy complementary slackness
conditions(CSC):

y,'(A,'X— b,) =0

x(Ay—¢)=0

A;: the i th row of A
AJ: the j th column of A
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Given a feasible dual solution y
for some y; > 0, Aix— b; = 0; for Ay — ¢; < 0, we have x; = 0.
I={ilyi=0},J = {j#y— ¢ =0}

restricted primal problem:
Z = min Zs,-—f— ZXJ
i1 j¢J
s.t. Ax; > b; iel
AX,' — 5 = b,' I'¢ /
x>0
s>0

if z= 0, the primal feasible solution x obeys the CSC, x is the optimal solution; if z# 0 ,
x violates some primal constrains or some CSC. y is less than OPT of dual.
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dual of restricted primal problem:

max b’y
st. Ay<o jelJ
Ay <1 j¢J
yi> -1 i¢l
y.>0 iel

since OPT of restricted primal > 0, there is a dual solution y s.t. 'bT)/ >0.

. . A
Y'=y+ey , where € <minjg,o—yi/y; and € < minjg 41,50 Cny,y
repeat this process until OPT of restricted primal problem is 0.
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Primal-Dual for Approximation Algorithms

2 problems with classic primal-dual method:
® linear programming
® how to find a solution y for dual of restricted primal problem.

Hitting set problem:

Hitting set is an equivalent reformulation of Set Cover.

Given subsets Ty,..., T, of a ground set E and given a nonnegative cost ¢, for every
element in E, find a minimum-cost subset Ast. ANT;#( fori=1,...,p.

Examples:
e undirected s-t shortest path: §(S) needs to be hitif s€ S, t ¢ S.

® minimum spanning tree: §(S) needs to be hit for all S.
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Hitting set problem can be formulated with integer programming(IP).

IP for undirected s-t shortest path: dual of its LP relaxation:
min Z CeXe max Z ys
ecE S:A(S)=1
st. Y xe>flS) ScV st. Y ys<c eckE
ecé(S) S:ecd(S)
Xj € {07 1} ys > 0

*0(S): acuton Sand V—-S
*A={e:x.=1}

* y: dual variable

* T1,..., Tp sets to be hit
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start with y = 0, if there is any §(S) : {S) =1 that |[ANJ(S)| =0, we increase the
corresponding dual variable ys:

¥s = Minges(s){ce — Z y7}
T#S:ecs(T)

if Zs:eeé(s) ys < ce is satisfied, set corresponding primal variable x. = 1.
some edge e € §(S) will be add to A.

y<«0

A9

While 3k : ANT, =9
Increase yy untile € Ty 1 ), Vi = Ce
A < AU{e}

Output A (and y)

AN R W N -
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Example

cuts

sa,sc

+1(sa)

sa,cd

sa,dt

ab,sc

+1(sc)

ab,cd

+1(ab)

ab,dt

bt,sc

bt,cd

+1(cd)

bt,dt

+1(dt)
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design rules

® reverse delete step
® minimal violated set rule

® uniorm increase rule

y <0
A0
[ <0
While A is not feasible
[ <—1+1
V' <= VIOLATION(A)
Increase y; uniformly forall 7y € Vuntil 3e; £ A: ), .0 Yi = ¢y
A «— AU{e}
For j <[ downto 1
it A —{e,} is feasible then A < A — {e;}
Output A (and y)

—_— O O 0~ kW R

P
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approximation rate

c(A) = Z Ce

ecA

:ZZ%‘

ecA iecT;

p
=Y |ANTily;
i=1

let o = max{|AN T;|}. Since > y; < OPT, we get

p
o(A) <D ay; < aOPT
i=1
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Define minimal augmentation B of an infeasible solution A: B is a feasible solution that
includes A and for any subset C C B— A, AU Cis not a feasible solution.

For any final primal solution Af, |[BN T;| > |AfN Tj| holds if B is the maximum minimal
augmentation set.

= BN T(A
& A:aﬂT%éA\:om/gX' (A)l

T(A) is the T; selected by the algorithm for infeasible solution A.
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Consider the violation set Vj , yi =} 1.y, €
suppose now there is p violated cuts and / violated sets.

ISP I

i=1 j: T;eV;

=> Vg
j=1

—

p
Z]Afﬂ Tilyi = Z‘Afﬂ Til Z €
i=1

J:TieV;

= Z( Z |ArN Til)e

j=1 TiEVj
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Compare 2'.:1@%%_ |Af0 Ti)ej with S0 [Vjle.

P
ST AN T <41V
i=1

then

/

p
DA Tilyi=> (D AN Til)e
i=1 J=1 TieV

!
<> Ve
=1

P
= ”YZ}//'
i=1
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Again consider minimal augmentation B:
max |BN Tj| > |AfN Tj| holds, change |A¢rN Tj| to |[BN Tj:

p

MIANTI< Y [BNT|<AV(A)
i=1 TieV(A)

~ is the approximation rate.
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Example

prove that the algorithm for s-t shortest path problem above gives the optimal solution.

= BN T(A
& A:aT,-Tﬁ,-)r(wA\:o m§x| (A)l

the algorithm considers only one infeasible cut §(S) and s € S and S is minimal. After
increasing the corresponding dual variable only one edge will be added to A, so the
minimal augmentation BN T(A) = 1.
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0-1 Function f(S)

Xj € {0, 1}

To formulate another problem, only need to change the definition of fS).

0-1 function: f: 2" — {0,1}
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properties

Maximality: If AN B =0, {AU B) < max(f{A), {B)).
A violated set(cut) for A is a connected component of G(V, A)

downward monotone: If {S) < f{(T) for all SO T # ().

0-1 proper function:

« AV)=0
® fsatisfies the Maximality property.
* (S)=AV-S)forall SCV
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downward monotone function

Example: edge-covering problem:
f(S) = 1 iff. |S| = 1. satisfies downward monotone property.

Primal-Dual method gives a 2-approximation algorithm for edge covering. (use
B = maxa37.|TnAI=0 Maxg|BN T(A)|)

Theorem 1 Primal-Dual algorithm gives a 2-approximation algorithm with any downward
monotone function.
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> [BNA(S) < 4IV(A)|
SEV(A)

prove v =2

construct a graph H by taking the graph (V, B) and shrinking the connected component
of (V,A).(H is a forest)
W= {w|f(5,) = 1}

Y d<2W

veW
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Lemma connected components in H has at most one vertex v such that fS,) = 0.
(prove by contradiction)

c is the number of connected components in H.

Y d <> d=2(H -9 <2W

veW veH
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0-1 proper function

complementarity for 0-1 proper function which satisfies Maximality property, if
f(S) = {A) =0 for A € S then {S—A) =0.

proof Suppose {S— A) = 1.

V—-S)=AS)=0,V—-A)=fA)=0,V—-S+A) = {S—A) = 1. Function fsatisfies
Maximality property: 1 = {V— S+ A) < max(f{V— A), {A)) = 0, a contradiction.
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0-1 proper function

Example generalized steiner tree: minimum forest that connects all vertices T; for
i=1,...,p.
S)=1if3ie{l,2,...,p}st. SUT; #0and SUT; # T,

B = maxa.37,:TnA|=0 Maxg |BN T(A)|. B can be [V] — 1.(Consider a complete graph.
Each edge has cost 1. At the first step of primal dual algorithm, A= 0,
BN T(A) =V —1)

Theorem 2 Primal-dual algorithm gives a 2-approximation algorithm for IP with any 0-1
proper function.
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Lemma 1 fis 0-1 proper function, A is any feasible solution. R = {e|A — e is feasible},
then A — R is feasible.

proof

—— AR

*~---=--9 R
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Lemma 2 No leaf v of H satisfies S,) = 0.

proof Suppose some leaf v satisfies {S,) = 0, let C be the connected component of

(V, B) that contains S,. Since B is feasible, {C) = 0. Since {S,) = 0 and by
complementarity property, {C — S,) = 0. But there is an edge in B that connects C— S,
and S,, B is the minimal augmentation, a contradiction.
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Proof of Theorem 2.
By Lemma 2, all vertices with degree 1 are in W.

dode=Y do— > d <2(H —1)=2(|H - W) = 2/W] -2

ve W veH vt W
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